初一下学期数学知识点归纳总结

初一下学期数学知识点归纳总结

初一下学期数学重要内容及核心考点归纳总结?

第一章 整式的运算一. 整式※1. 单项式(1)由数与字母的积组成的代数式叫做单项式。独自一个数或字母也是单项式。(2)单项式的系数是这个单项式的数字因数,作为单项式的系数,一定要连同数字前面的性质符号,假设一个单项式只是字母的积,并不是没有系数.(3)一个单项式中,全部字母的指数和叫做这个单项式的次数.※2.多项式(1)哪些单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.这当中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.(2)单项式和多项式都拥有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都拥有它们各自的次数,但是,它们的次数不可能都作是为这个多项式的次数,一个多项式的次数唯有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减本质性就是去括号后,合并同一类型项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:(1)法则使用的前提条件是:幂的底数一样而且,是相乘时,底数a可以是一个详细的数字式字母,也可是一个单项或多项式;(2)指数是1时,不要误以为没有指数;(3)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数一样指数完全就能够相加;而针对加法,不仅底数一样,还需要求指数一样才可以相加;(4)当三个或三个以上同底数幂相乘时,法则可推广为 (这当中m、n、p都是正数);(5)公式还可以逆用: (m、n都是正整数)四.幂的乘方与积的乘方※1. 幂的乘方式则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不可以混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但能用到乘方式则化成同底,如将(-a)3化成-a3※4.底数有的时候,形式不一样,但可以化成一样。※5.要注意区别(ab)n与(a+b)n意义是不一样的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方式则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。※7.幂的乘方与积乘方式则都可以逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且mn).※2. 在应耗费时长需要大家特别注意以下几点:(1)法则使用的前提条件是“同底数幂相除”而且,0不可以做除数,故此,法则中a≠0.(2)任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.(3)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0时,a-p的值可能是正也许是负的,如 , (4)运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、一样字母分别相乘,针对只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运耗费时长要注意以下几点:(1)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易产生的错误的是,将系数相乘与指数相加混淆;(2)一样字母相乘,运用同底数的乘法法则;(3)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;(4)单项式乘法法则针对三个以上的单项式相乘同样适用;(5)单项式乘以单项式,结果仍是一个单项式。※2.单项式与多项式相乘单项式乘以多项式是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:(1)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数一样;(2)运算时要注意积的符号,多项式的每一项都涵盖它前面的符号;(3)在混合运算时,要注意运算顺序。※3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:(1)多项式与多项式相乘要防止漏项,检查的方式是:在没有合并同一类型项以前,积的项数应等于原两个多项式项数的积;(2)多项式相乘的结果应注意合并同一类型项;(3)对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。针对一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 。¤其结构特点是:(1)公式左边是两个二项式相乘,两个二项式中第一项一样,第二项互为相反数;(2)公式右边是两项的平方差,即一样项的平方与相反项的平方之差。八.完全平方公式¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,¤即 ;¤口决:首平方,尾平方,2倍乘积在中央;¤2.结构特点:(1)公式左边是二项式的完全平方;(2)公式右边共有三项是二项式中二项的平方和,另外,或减去这两项乘积的2倍。¤3.在运用完全平方公式时,要注意公式右边中间项的符号,还有不要产生 这样的错误。九.整式的除法¤1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,针对只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数一样,另外还需要特别注意符号。第二章 平行线与相交线一.台球桌面上的角※1.互为余角和互为补角的相关概念与性质假设两个角的和为90°(或直角),既然如此那,这两个角互为余角;假设两个角的和为180°(或平角),既然如此那,这两个角互为补角;注意:这两个概念都是针对两个角来说的,而且,两个概念强调的是两个角的数量关系,与两个角的相互位置没相关系。它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。二.探索直线平行的条件※两条直线相互平行的条件即两条直线相互平行的判断定理,共有三条:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行。三.平行线的特点※平行线的特点即平行线的性质定理,共有三条:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补。四.用尺规作线段和角※1.有关尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。※2.有关尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。第三章生活中的数据※1.科学记数法:对任意一个正数可能写成a×10n的形式,这当中1≤a<10,n是整数,这样的记数的方式称为科学记数法。¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;针对一个近似数,从左边第一个不是0的数字起,到精确到的数位止,全部的数字都叫做这个数的有效数字。¤3.统计工作涵盖:(1)设定目标;(2)收集数据;(3)整理数据;(4)表达与描述数据;(5)分析多得出的结论。第四章 可能性¤1.随机事件出现与不出现的概率不总是一边一半,都为百分之50。※2.现实生活中存在着非常多的无法确定事件,而可能性正是研究无法确定事件的一门学科。※3.了解肯定事件和不可能事件出现的可能性。肯定事件出现的可能性为1,即P(肯定事件)=1;不可能事件出现的可能性为0,即P(不可能事件)=0;假设A为无法确定事件,既然如此那,0P(A)1※4.了解几何可能性这种类型问题的计算方式事件出现可能性= 第五章 三角形一.认识三角形1.有关三角形的概念及其按角的分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。这里要注意两点:(1)组成三角形的三条线段要“不在同一直线上”;假设在同一直线上,三角形就不存在;(2)三条线段“首尾是顺次相接”是指三条线段两两当中有一个公共端点,这个公共端点就是三角形的顶点。三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。2.有关三角形三条边的关系按照公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。三角形三边关系的另一个性质:三角形任意两边之差小于第三边。针对这两个性质,要全面理解,掌握并熟悉实际上质,应耗费时长才不会出错。设三角形三边的长分别是a、b、c则:(1)大多数情况下地,针对三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,唯有|b-c|<a<b+c成立,a、b、c三条线段才可以构成三角形;(2)特殊地,假设已知线段a最大,只要满足b+c>a,既然如此那,a、b、c三条线段就可以构成三角形;假设已知线段a最小,只要满足|b-c|<a,既然如此那,这三条线段就可以构成三角形。3.有关三角形的内角和三角形三个内角的和为180°(1)直角三角形的两个锐角互余;(2)一个三角形中至多有一个直角或一个钝角;(3)一个三角中至少有两个内角是锐角。4.有关三角形的中线、高和中线(1)三角形的角平分线、中线和高都是线段,不是直线,也不是射线;(2)任意一个三角形都拥有三条角平分线,三条中线和三条高;(3)任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不一样的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。(4)一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。 二.图形的全等¤可以完全重合的图形称为全等形。全等图形的形状和大小都一样。只是形状一样而大小不一样,或者说只是满足面积一样但形状不一样的两个图形都不是全等的图形。四.全等三角形¤1.有关全等三角形的概念可以完全重合的两个三角形叫做全等三角形。相互重合的顶点叫做对应点,相互重合的边叫做对应边,相互重合的角叫做对应角这里说的“完全重合”,就是各条边对应相等,各个角也对应相等。因为这个原因也可这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。※2.全等三角形的对应边相等,对应角相等。¤3.全等三角形的性质常常用来证明两条线段相等和两个角相等。五.探三角形全等的条件※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”※4.两角和这当中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”六.作三角形1.已知两个角及其夹边,求作三角形是利用三角形全等条件“角边角”即(“ASA”)来作图的。2.已知两条边及其夹角,求作三角形是利用三角形全等条件“边角边”即(“SAS”)来作图的。3.已知三条边,求作三角形是利用三角形全等条件“边边边”即(“SSS”)来作图的。八.探索直三角形全等的条件※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。※2.直角三角形是三角形中的一类,它具有大多数情况下三角形的性质,因而也可以用“SAS”、“ASA”、“AAS”、“SSS”来判断。直角三角形的其他判断方式可以归纳请看下方具体内容:(1)两条直角边对应相等的两个直角三角形全等;(2)有一个锐角和一条边对应相等的两个直角三角形全等。(3)三条边对应相等的两个直角三角形全等。第七章 生活中的轴对称※1.假设一个图形沿某条直线折叠后,直线两旁的部分可以相互重合,既然如此那,这个图形叫做轴对称图形;这条直线叫做对称轴。※2.角平分线上的点到角两边距离相等。※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。※4.角、线段和等腰三角形是轴对称图形。※5.等腰三角形的顶角平分线、底边上的高、底边上的中线相互重合,简称为“三线合一”。※6.轴对称图形上对应点所连的线段被对称轴垂直平分。※7.轴对称图形上对应线段相等、对应角相等。

小学五年级数学下册的重点难点?

因数与倍数间的各自不同的关系,难点:长方体,正方体的体积,表面积,容积,在运耗费时长有部分困难,还有面积,体积,长度 ,单位当中的换算,这些内容都要多练习,主意细节问题,现现在为止,我认为这都是重要考试难点及核心内容,期望你的孩子获取优异的成绩

五年级下册数学知识要点:

第一单元:图形的变换

1. 轴对称图形:一个图形沿一条直线对折,两侧的图形可以完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。

2. 轴对称图形的特点:1、对称点到对称轴的距离相等;2、对应点连线与对称轴相互垂直。

3. 旋转:图形或物体绕着一个点或一条轴运动的情况叫做旋转。

第二单元:因数与倍数

1. 因数和倍数:在整数乘法里,假设a×b=c,既然如此那,a和b是c的因数,c是a和b的倍数。

2. 为了方便,在研究因数和倍数时,我们所说的数指的是整数(大多数情况下不涵盖0)。但是,0也是整数。

3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。

4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。

5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。

6. 自然数中是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。

8.

四则运算中的奇偶规律:

奇数+奇数=偶数 奇数-奇数=偶数 奇数×奇数=奇数

偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数

奇数+偶数=奇数 奇数-偶数=奇数 奇数×偶数=偶数

偶数-奇数=奇数

9. 一个数,假设唯有1和它本身两个因数,这样的数叫做质数(或素数);假设除了1和它本身还不一样的因数,这样的数叫做合数。

10. 1既不是质数,也不是合数。

11. 自然数根据因数的个数多少,可以分为1、质数、合数;按是不是是2的倍数,可以分为奇数、偶数。

12. 100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

第三单元:长方体和正方体

1. 正方体也叫立方体。

2. 长方体的特点是:(1)长方体有6个面;(2)每个面都是长方形(情况特殊下有两个相对的面是正方形);(3)相对的面完全一样;(4)有12条棱;(5)相对的棱长度相等;(6)有8个顶点。

3. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

4. 正方体可以看成是长、宽、高都相等的长方体。正方体是特殊的长方体。

5. 正方体的特点是:(1)正方体有6个面;(2)每个面都是正方形;(3)全部的面都完全一样;(4)有12条棱;(5)全部的棱长度都相等;(6)有8个顶点。

6. 长方体的棱长总和=(长+宽+高)×4

7. 正方体的棱长总和=棱长×12

8. 长方体六个面的面积总和叫做长方体的表面积。

9. 上面或下面面积=长×宽;前面或后面面积=长×高;左面或右面面积=宽×高。

10. 长方体的表面积=(长×宽+长×高+宽×高)×2

11. 正方体的表面积=棱长2×6

12. “有两个相对的面是正方形”的长方体表面积=正方形面的面积×2+长方形面的面积×4

13. 长方体的侧面积=底面周长×高

14. 物体所占空间的大小,叫做物体的体积。

15. 经常会用到的体积单位有立方厘米,立方分米和立方米,可以分别写成cm3,dm3,和m3。

16. 棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。

17. 长方体的体积=长×宽×高;用字母表示是V=abh

18. 正方体的体积=棱长3;用字母表示是V=a3

19. 长方体(或正方体)的体积=底面积×高=横截面积×长

20. 在工程上,1立方米简称1方。

21. 1个长方体或正方体,假设全部的棱长都扩大n倍,既然如此那,棱长总和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。

22. 棱长总和相等的长方体或正方体,正方体的体积最大。

23. 1立方米=1000立方分米;1立方分米=1000立方厘米。

24. 每相邻两个长度单位间的进率是10;每相邻两个面积单位当中的进率是100;每相邻两个体积单位当中的进率是1000。

25. 容器所能容纳物体的体积,一般叫做它们的容积。计量容积,大多数情况下就用体积单位。

26. 计量液体的体积,经常会用到的容积单位是升和毫升,也可写成L和ml。

27. 1升基本上等同于1立方分米,1毫升基本上等同于1立方厘米,故此,1升=1000毫升。

28. 长方体或正方体容器容积的计算方式,跟体积的计算方式一样,但要从容器里面量长、宽、高。故此,容器的容积比体积要小一部分。

29. 浸没在水中的物体的体积=目前水的体积-原来水的体积=容器的长×容器的宽×水面上升的高度

30. 怎样测量一个不规则的物体的体积呢?先在量杯里装上适量的水,记下水面对应的刻度,再把物体浸没在水中,再记下新的水面对应刻度。两次刻度的差,就是这个不规则物体的体积。

第四单元:成绩的意义和性质

1. 一个物体或是哪些物体组成的一个整体都可以用自然数1来表示,我们一般把它叫做单位“1”。

2. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做成绩。比如3/7表示把单位“1”平均分成7份,取这当中的3份。

3. 5/8米按成绩的意义,表示:把1米平均分成8份,取这当中的5份。按成绩与除法的关系,表示:把5米平均分成8份,取这当中的1份。

4. 把单位“1”平均分成若干份,表示这当中一份的数叫成绩单位。

5. 成绩和除法的关系是:成绩的分子基本上等同于除法中的被除数,成绩的成绩分数线基本上等同于除法中的除号,成绩的分母基本上等同于除法中的除数,成绩的成绩值基本上等同于除法中的商。

6. 把一个整体平均分成若干份,求每份是多少,用除法。总数÷份数=每份数。

7. 求一个数量是另一个数量的几分之几,用除法。一个数量÷另一个数量=几分之几(几倍)。

8. 分子比分母小的成绩叫真成绩。真成绩小于1。

9. 分子比分母大或分子和分母相等的成绩叫做假成绩。假成绩大于1或等于1。

10. 带成绩涵盖整数部分和成绩部分,成绩部分需要是真成绩。带成绩大于1。

11. 把假成绩化成带成绩的方式是用分子除以分母,商是整数部分,余数是分子,分母不变。把带成绩化成假成绩的方式是用整数部分乘分母的积加原来的分子作分子,分母不变。

12. 整数可以看成分母是1的假成绩。比如5可以看成是5/1。

13. 成绩的分子和分母同时乘或除以一样的数(0除外),成绩的大小不变。这叫做成绩的基本性质。

14.

急!六年级数学下册第一单元重要内容及核心考点?

一单元,负数,重点:认识负数。难点:了解负数的意义及负数与正数的关系。

二单元,圆柱与圆锥,重点:(1)圆柱体积、表面积的计算,(2)圆锥体积的计算。难点:圆锥体积计算公式的推导。

三单元,比例,重点:比例的意义和正反比例的意义。难点:正确判断正、反比例。

四单元,统计,重点:绘制扇形统计图和折线统计图。难点:按照折线统计图正确描述数量变化情况。

五单元,数学广角,重点:了解“抽屉原理”,会用“抽屉原理”处理简单的实质上问题。难点:将实质上问题抽象为数学问题来处理。

六单元整理和学习,重点:(1)数与代数的知识及处理问题,(2)几何形体的知识及处理问题。难点:(1)对所学知识系统化,融会贯通。(2)综合运用所学知识与技能处理问题,并寻找灵活的途径。

七年级数学下册顺口溜?

七年级就是原来的初一,初一数学启动难,好好学习才可以懂。初一比起小学来,难度增多了不少,这个难度不大多数情况下,好好努力才会懂。

初一下半年的数学,难度更是要增多,难度增多了不少,不好好学习你不懂。初中数学上难度,已经需有水平,多了不少新思维。

七年级数学顺口溜:有理数的加法运算 同号两数来相加,绝对值加不变号。 异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。七年级数学顺口溜摘抄

有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。

合并同一类型项

说起合并同一类型项,法则千万不可以忘。

只求系数代数和,字母指数留原样。

去、添括号法则

去括号或添括号,重要要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

七年级数学顺口溜推荐

平方差公式

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

七年级数学顺口溜精选

解一元一次方程

先去分母再括号,移项变号要牢牢记在心里。

同一类型各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程

先去分母再括号,移项合并同一类型项。

系数化1还没好,准确正确不白忙。

以上就是本文初一下学期数学知识点归纳总结的全部内容,关注初中教育网了解更多关于文初一下学期数学知识点归纳总结和初二的相关信息。

本文链接:http://zhongxue.china-share.com/zhongxue/18820.html

发布于:初中教育网(http://zhongxue.china-share.com)>>> 初二栏目

投稿人:网友投稿

说明:因政策和内容的变化,上文内容可供参考,最终以官方公告内容为准!

声明:该文观点仅代表作者本人,初中教育网系信息发布平台,仅提供信息存储空间服务。对内容有建议或侵权投诉请联系邮箱:eddfgdf@foxmail.com

初二热门资讯推荐

  • 初二初一下学期数学知识点归纳总结

    初一下学期数学重要内容及核心考点归纳总结? 第一章 整式的运算一. 整式※1. 单项式(1)由数与字母的积组成的代数式叫做单项式。独自一个数或字母也是单项式。(2)单项式的系数是这...

  • 初二初三九科是哪九科,山东九年级各科满分是多少

    初三九科是哪九科? 初三九科是指学生在初三阶段学习的九科文化知识课程。 一是语文、数学、英语三大科。 二是文科综合(涵盖政治、历史和地理)。 三是理科综合(涵盖物理、化学和生...